
Introduction
Error, Failure,
and Code Creation
Ellen Ullman

You need the willingness to fail all the time.

Those words guided me throughout all the years when I worked
to become a decent programmer, as they no doubt guided count-
less others. That one sentence reminded us that coding is a life
in which failure will be your constant shadow. Bugs, crashes,
halts, glitches, hacks: programmers who want to survive in the
profession (like anyone hoping to create a new thing on earth)
must come to a begrudging acceptance of failure as a confound-
ing helper, an agent of destruction you wish you could evade,
but never can.

The words were spoken by John Backus, who led the group
that created the FORTRAN programming language, fully released
in 1957.1 FORTRAN (short for Formula Translator) was the first
language that allowed programmers to write code that was not di-
rectly tied to any one computing environment. It was a frustrating
project that lurched from failure to failure. Backus went on to say:

You have to generate many ideas and then you have to work
very hard only to discover that they don’t work. And you keep
doing that over and over until you find one that does work.2

He also told us:

If you are not failing a lot, you are probably not being as cre-
ative as you could be—you aren’t stretching your imagination.3

2 / Introduction

Software companies try to avoid serious failures with proce-
dures, rules, reviews. But programs are works of the imagination
that must then make the hazardous crossing into the structured
world of code. The attempts to avoid failure will also fail.

All code has flaws, inevitably. Human thought is wonderfully
chaotic; it allows us to hold incompatible beliefs, be interrupted,
function in a world we do not fully understand. So much of what
we know is inscribed in the body, the product of evolution, in-
stinctive, not readily accessible to the rational mind, what Daniel
Kahneman has described as fast thinking (System 1). Meanwhile,
code-writing (as opposed to the creative work of code-design)
requires fully conscious and rational thought, Kahneman’s
“slow thinking” (System 2),4 a level of focused attention that is
impossible to sustain over time.

I have a friend who was once in charge of testing at a startup
that was frantic to go public. The IPO was delayed for months on
end because of the relentless appearance of new serious bugs.
The higher-ups demanded to know, “When will all the bugs be
found?” It was a ridiculous question, because the testing was
being done even while new code was being written. Meanwhile,
“fixes” to already discovered bugs were in the business of cre-
ating a whole new pile of bugs. In any case, no one can predict
when the last bugs will be found, because the only correct an-
swer is, “Never.”

Many bugs are blind spots in the code. The designer and
programmer try to protect the system by looking for condi-
tions that will break things: they will not find them all. Most
often, software teams are rushed. They have to create systems
quickly. Programmers don’t have time to lean back, think of
other things, let the background of the mind speak. A prime
source of bugs is absurd scheduling.

Other bugs are like physical vulnerabilities inscribed in the
DNA. These bugs sit quietly until some environmental factor (in
humans, things like ageing, chemicals, medications) suddenly
activates the flaw, and we get sick. In the case of computing, the

Introduction / 3

technical environment is complex and constantly changing.
Programs interact with modules not foreseen in the original de-
sign; with new operating systems and changed ones, variations
in chips, network configurations, protocols, device drivers; be-
deviled by documentation that cannot keep up with the changes.
What worked one day doesn’t work the next, and the program-
mer’s constant question is, “What changed?” Well, lots of things.
Which one (or ones) did the damage? That way lies madness.

The deepest weaknesses are revealed when a digital creation
is designed for expert users in a collegial environment, and then
opened to a wider pool.

Dennis Ritchie and his team developed the C language,5
which, along with Unix, was part of a research project con-
ducted inside the storied Bell Labs technology incubator.6 The
language gave the team’s programmers a great deal of freedom,
including direct access to the contents of memory, something
systems normally do not allow, in order to protect the integrity
of the coding environment. That level of freedom was fine as
long as their work remained a research project. According to
Brian Kernighan, who coauthored the book that introduced C to
the world,7 Ritchie did not anticipate that the operating system
and language would become “as big as they did.”8 Yet they did
indeed become big. Programmers’ access to memory then es-
caped into the wild: programs acquired the dangerous ability to
invade and manipulate the memory space of another program
(mostly by accident), and that invaded program can invade an-
other’s (and so on), enabling a world of perplexing bugs.

Then there is the Internet itself, derived from the ARPANET,
which was created as a platform in which a limited group of
researchers could converse openly about scientific subjects.9
Security was not assumed to be needed. And so arrived the
hackable digital universe.

I once had the good fortune of working for a hacker. This goes
back to the time when “hacker” was an honorific, as it still is

4 / Introduction

among talented hardware and software engineers. It refers to a
type of crusty programmer who can chop through code with a
combination of grim determination and giddy enthusiasm. The
goal, above all, is to uncover the flaws that induce the failures,
then (somehow or other) devise the fix that will make things work.
Their solutions are often “ugly,” in coder parlance (aka kludges),
the product of down-and-dirty plumbing. But no matter. Maybe
lovely, elegant programs and systems can come later. Or not.

“Hacker” has acquired a less admirable meaning, of course,
having acquired the taint of what we used to call “crackers,” as
in safe crackers, people not allowed to get at what’s in the safe
but who get in anyway. It is a chaotic world involving everyone
from cryptocurrency tinkerers to bank thieves; from hackers
working for hostile nation states to ones stealing data for espi-
onage and ransom; to those seen as ethical hackers, who want
to reveal the wrongdoings of anyone or anything in power; to
loners looking for notoriety; to pranksters, jokers, naughty boys
of all ages, breaking in just to see if they are clever enough to
do it. (It’s fun to make porn appear in Zoom meetings, isn’t it?)

There are the workaday hacks, the constant reports of code
vulnerabilities. Peter G. Neumann, the revered computer sci-
ence researcher, moderates “The Risks Digest,”10 which is
updated weekly, sometimes as often as every few days. The
“Crypto-Gram Newsletter,”11 written by noted security analyst
Bruce Schneier, is released monthly. As individual program-
mers and software makers struggle against the onslaught of
flaws in their own code, they are meanwhile bombarded by the
hacks that rain down upon the digital planet, nearly invisible,
like the solar wind.

Then come the hackers who break into the code meant to
defend against hackers: code to protect code becomes a vic-
tim. NASA stored reports of vulnerabilities they received from
friendly hackers, and then the store itself was hacked.12 Software
written by the company CodeCov,13 which is widely used to test
for bugs and code vulnerabilities, was broken into by Russian

Introduction / 5

hackers, giving them a window into the very code to be pro-
tected. In a recently revealed 10-year-old hack, Chinese spies
broke into RSA’s cryptosystem.14 The company is a corporate
security giant whose customers include “tens of millions of
users in government and military agencies, defense contrac-
tors, and countless corporations around the world,” according
to wired.com. The break-in allowed “hackers to instantly bypass
[RSA’s] security system anywhere in the world.”15

The fate of humanity hangs in the balance. Nicole Perlroth’s
book This Is How They Tell Me the World Ends: The Cyberweapons
Arms Race,16 describes how the Internet—buggy and hackable—
has become a potent military tool. It has the dark power to ignite
global war: by accident, or by design.

Now I will return to the “good” use of hacker, because I want to
preserve its historical meaning among the general public and
give the original hackers their due: an army of sometimes di-
sheveled geniuses who were wary of rules and formalities, non-
conformist in their thinking, somehow both brilliant and prac-
tical at the same time, who could reach in, rummage around,
and figure out what to do. A member of Backus’s FORTRAN team
called their group “the hackers of those days.”17

A now-famous hack saved the Apollo 13 mission from di-
saster.18 Before the mission could achieve a moon landing as
planned, an oxygen tank exploded in the command module.
The three astronauts had to take refuge in the lunar module,
which was designed to carry only two astronauts. To reduce
the build-up of carbon dioxide, they retrieved an additional
canister of lithium hydroxide pellets (a carbon dioxide scrub-
ber) from the command module.19 But there arose the sort of
problem that plagues complex projects: components designed
and built separately. One canister had a round connector, the
other a square one, the proverbial square peg in a round hole.20
A remedy had to be found—quickly—or all three men would die
of asphyxiation.

6 / Introduction

NASA engineers on the ground raced to find a solution. They
threw together bits of stuff that were on the spacecraft—plastic
bags, covers ripped from manuals, duct tape, cardboard, anything
—and devised a bridge between the mismatched connectors. It
was one of those “ugly” fixes. As the Apollo 13 astronaut James
Lovell later described it: “Hose. Duct tape and an old sock.”21

Daniel Kaminsky, a famed cybersecurity expert, created an-
other legendary, down-and-dirty hack. In 2008,22 he discovered
a security hole in the Internet’s Domain Name System (DNS),
which converts website URLs to specific IP addresses. Kaminsky
saw how easy it was for knowledgeable bad actors to redirect
the user not to the intended destination, but to a world of fake
sites—a “bank,” a “credit card company,” an “email login”—and
therefore collect the user’s IDs and passwords. He alerted others
and, along with Paul Vixie, coded an emergency patch.

Kaminsky, who will forever have a place of honor among the
greats of the hacker community, died on April 23, 2021. His
obituary in the New York Times called him “the savior of the In-
ternet.”23 He was the first to sound the alarm and respond to the
threat. Yet, given what we know about the relationship between
coding and error, it is no surprise to learn that the patch was far
from perfect. After the “fix” was installed, there were 6:00 a.m.
calls from Finnish certificate authorities saying their security
procedures were broken. Some DNS servers stopped working
correctly. And there were some pretty harsh words from Ka-
minsky’s peers in the security community.24 Years later, in a talk
at the 2016 Black Hat hacker conference, Kaminsky referred
to his patch as “that DNS mess.”25 Vixie, a longtime steward of
the DNS, described the code they cobbled together in terms yet
more ugly than Apollo’s old sock: he compared it to dog excre-
ment. In the way of hacker expediency, he called it the best dog
excrement “we could have come up with.”26

Each of the programs, systems, and concepts discussed in this
book had to go through the test of trial-by-error. The essays in

Introduction / 7

this book explore a wide range of topics. Several offer a deeper
look at technologies familiar to the general public: the coming
of Email, hyperlinking, JPEG image files, the Facebook Like.
Some discuss historical landmarks that ought to be known more
widely: women’s contributions to early computing; the creation
and endurance of COBOL, the first language in general use for
business software; the coming of BASIC, the wonderful begin-
ner’s language.

Two essays explore deeper concepts in computing: data en-
cryption, and the Markov Chain Monte-Carlo concept (MCMC),
a foundational mathematical method used to understand dis-
tributions in data and arrive at probabilities.

Computing can bring happiness, as three essays show. There
is pleasure (and pain) in learning to write code; in the fun brought
into the world by Spacewar!, the first distributed video game;
and in the advent of the Roomba, which, in addition to cleaning
floors, also gave hours of delirious pleasure to innumerable cats.

Two essays discuss contributions to computing that I see as
being derived from the idea of “the wisdom of the crowd”: the
Facebook Like button and page ranking. The premise is that
numbers in and of themselves say something about the worth of
whatever is being liked, from websites to Instagram postings to
dance crazes on TikTok: more likes equals more eyeballs equals
“better.” The underlying theory is based on the belief that, given
a very large universe of participants, a truth will emerge.

The coming of the “smart mob” has been a decidedly mixed
blessing. Twenty-five years ago, I had an informal talk with Larry
Page about Google’s search engine as it worked at the time. I
said I was concerned that the order in which results were listed,
based as it was on the number of links into a given page, was
a species of the rich getting richer. Larry, ever thoughtful, sat
quietly, considering his reply. Finally he said, “I worried about
that too, but I realized there was nothing I could do about it.”

What he meant was that there was nothing he could do algo-
rithmically. Given the immense universe of knowledge, a human

8 / Introduction

curator would have faced an impossible task; code has to be
the curator. Google’s search engine has improved vastly over
time, its criteria for ranking becoming ever more sophisticated.
And search engines, most modeled on Google’s, have brought
astounding advances in how human beings can understand
the world. Yet search engines have also ushered in the age of
“most popular,” “trending,” “bests,” and posts that users hope
will “go viral.” This amplification of responses can empower the
public and create a world of fun. They also reveal the hazards
of assigning wisdom to the crowd: results prejudiced by the
cultural majority, an arms race between the search algorithm
and sites wanting to promote themselves, conspiracy theo-
ries, hordes of influencers stoking likes and clicks, truly fake
news.

Then there are the programs we wish had not survived the
assault by bugs. One essay examines so-called predictive po-
licing, which pretends to predict where crime will take place in
the future. Like all AI algorithms, it is based on databases laced
with bad information, on methods that are rife with bias.

On a lighter note, there is another maybe-we-never-wished-
for code invention: the pop-up ad. The essay here, by the pro-
grammer who authored it, describes his remorse, the regret he
feels about loosing the pop-up upon the world.

A book about code must necessarily address the subjects that
are integral to the creation of software: error and failure. “The
Lost Mars Climate Orbiter” describes a failure that, 28 years
after Apollo 13,27 echoes the earlier mission’s mistake: system
parts created separately. One team used the American mea-
surement system, the other the English Imperial system. The
repetition of this type of error shows how pervasive are the haz-
ards in complex systems, where one group of engineers cannot
possibly create the whole, and disparate parts must somehow
be knit together, and flawlessly.

“Heartbleed” describes a bug deep in the internals of the
Internet that caused havoc for millions of devices. A hacker ex-

Introduction / 9

ploited weaknesses in open-source software and vulnerabilities
in the C language, as mentioned above, which gave program-
mers direct access to the contents of memory. Like so many er-
rors, the problem lay dormant, everything apparently working,
until something in the environment changed: the arrival of a
hacker with malicious intent.

Another essay discusses the Morris Worm, the first to be dis-
tributed via the Internet. Robert Tappan Morris, then a graduate
student at Cornell, wrote the invasive code as an intellectual
project, as a test of the Internet’s weaknesses. However, a mis-
take in his code instructed the worm to keep reproducing itself,
whether or not a system had already been infected. Then he
inadvertently released the worm into the wild. A senior engi-
neer who worked on the emergency caused by the worm, Colm
MacCárthaigh, later said, “It felt like the Internet was on fire.”
Morris never intended to cause the vast damage he did. In this
sense, his worm was a bug inside a hack.

A particularly pernicious use of errant code was deployed
by Volkswagen to falsely lower the readings of pollution levels
caused by their diesel engines: an intentional bug, an error cre-
ated for corporate gain.

And then we come to the day-to-day, unglamorous but vital
chore performed by all good programmers: adding comments
to their code. Comments are an invaluable tool; they describe
sections of the program that are tricky, not immediately obvi-
ous or readable. Comments are acts of generosity, help for the
unknown colleagues who will work on the code over time, in the
hope that they will keep a system working.

Sometimes the “future” programmer will be the original au-
thor of the code, and the comment is a gift to oneself, since it is
all but impossible for individuals to recall all the complex details
in the software they have written. A bug is an opportunist that
waits at the gate of any change to the body of running code; a
comment is a weapon that, a priori, takes up the battle against
software entropy.

10 / Introduction

I am just old enough to remember the desperate attempts by
the United States to match the Soviet Union’s great achieve-
ment, Sputnik, the first earth-orbiting satellite. NASA’s launches
were broadcast on television, some live. We saw one rocket after
another exploding spectacularly on the pad; or collapsing in
a ball of fire after lifting-off a mere few feet; or managing to
rise into the sky only to burst into flames at the first stage of
separation.28 Those failures are engraved in the memories of
those who watched the attempts: the great anguish inherent
in technological achievement, and, per Backus, the imperative
to try again.

Decades later, after scores of intervening successes—
including a human’s trip to the moon and projects that sent
explorer satellites to the edge of our solar system and beyond—
NASA launched the mission to send the Perseverance Rover to
Mars. The launch took place on July 30, 2020.29 On February 18,
2021, nearly six months later, Perseverance landed on Mars.

The landing was streamed live30 thanks to NASA’s commit-
ment to inform the public, even if a mission might fail. What
riveted my attention was a pane on the left side of the screen.
It highlighted each stage as the mission unfolded, modules
for launch, separations, cruise balance, etc. Between each
module was a step that began with the word “Interface,” as
in: Module A, Interface to module B, Module B, Interface
to Module C, Module C, and so on. You could see the tension in
the faces of the women and men staring into their monitoring
screens. I held my breath along with them.

There is no more hazardous place in a complex project than
the handshake between one section and the next. In this in-
terregnum lurks all the potential misunderstandings between
separate groups of developers, as we saw with the lost Mars
orbiter and the near catastrophe of Apollo 13. The illuminated
word “Interface” always seemed to linger for far too long. I
wondered if this latest generation had learned the lessons of
their forebears, who knew the danger zones. In the case of a

Introduction / 11

breakdown, did these young engineers have the hackers’ skills
to scrounge around and repair a ripped seam? This Mars Rover
project seemed impossibly complicated, riddled with opportu-
nities for disaster. I watched in a mood of both exaltation and
horror.

Time went by. The display followed the steps in the project:
one module, interface, next module, interface, and the next. Fi-
nally we came to the astounding unfurling of the parachute that
gently lowered Perseverance to the surface. And it was done.

And yet.
There is no such thing as the last bug.
The problem appeared in the initial test of the small heli-

copter, Ingenuity, which had arrived on Mars attached to the
underbelly of Perseverance, like a baby kangaroo in the pouch
of the mother ship. Ingenuity was to attempt to fly in the thin
atmosphere of Mars, to pioneer an age of powered, controlled
flight—engineered by humans—on a planet other than earth.

The first try failed. The helicopter’s start-up activities took
longer than expected, and its computer shut down the motors.
The engineers overseeing the mission identified a potential
workaround and devised a patch. Yet, knowing that touching
existing code is an excellent opportunity to break it, they wisely
did not install it. Instead, they adjusted the commands they
would send to the craft.31

Here was a repair that was sent not through the Internet but
across 130 million miles of space.32 Engineers had to wait two
anxious earth days to find out if their changes would work.33 On
April 19, 2021, Ingenuity rose 10 feet into the Martian atmo-
sphere as planned, hovered briefly, banked, turned, and landed
at its takeoff point.34

More flights followed. Failure had led to success. This was a
bug-fix for our time, another hack for the ages.

